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1 Introduction to Lp Spaces

1.1 Lp spaces and norms

Fix a measure space (XM, µ). We will deal with complex functions, but the real case is
the same.

Definition 1.1. Let 0 < p <∞, and let f : X → C be measurable. The Lp norm1 is

‖f‖p :=

(∫
X
|f |p dµ

)1/p

.

If f doesn’t have a lot of spiky parts in its graph, then the Lp norm of f is about the
value of f . When the graph has huge peaks, as p gets bigger, the spikes are amplified.
Likewise, as p gets bigger, tails of functions are suppressed.

Definition 1.2. The Lp space Lp(X,M, µ) = Lp(µ) = Lp is the space of measurable
functions f : X → C such that ‖f‖p <∞.

Example 1.1. Let X be a countable set with the measure µ, counting measure on
(X,P(X)). Then `p(X) := Lp(µ). As an example,

`p(N) = `p =

{
(xn)n ∈ CN :

∑
n

|xn|p <∞

}
.

Lemma 1.1. For all p ∈ (0,∞), Lp(µ) is a vector space over C.

Proof. If ‖f‖p, ‖g‖p <∞,

|f + g|p ≤ (2 max(|f |, |g|))p = 2p max(|f |p, |g|p) ≤ 2p(|f |p + |g|p).

So ∫
|f + g|p dµ ≤ 2p

∫
|f |p + 2p

∫
|g|p <∞.

1This is only really a norm when p ≥ 1.
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1.2 Lp norm inequalities

Now assume p ≥ 1. We want to show that Lp is a normed space. These inequalities will
help us, but they are very important to know on their own.

Lemma 1.2. If a, b ≥ 0 and 0 < λ < 1, then

aλb1−λ ≤ λa+ (1− λ)b.

Proof. Assume a, b,> 0 and take logs:

λ log(a) + (1λ) log(b) ≤ log(λa+ (1− λ)b)

by the convexity of log.

Lemma 1.3 (Hölder’s inequality). Let 1 < p <∞, and define q ∈ (1,∞) by p−1+q−1 = 1.
If f, g : X → C are measurable, then

‖fg‖ ≤ ‖f‖p‖g‖q.

In particular, if f ∈ Lp and g ∈ Lq, then f, g ∈ L1. Equality holds if and only if α|f |p =
β|g|q for some α, β ∈ C not both zero.

Remark 1.1. In the statement of this lemma, q is called the conjugate exponent of p.

Proof. We may assume 9 < ‖f‖p, ‖g‖q < ∞. The inequality holds for γf and λg for
constants γ, λ iff it holds for f, g, so we may replace f, g by f/‖f‖p and g/‖g‖q.2 Let
λ = 1/p, 1− λ = 1/q, and apply the previous inequality:

|f(x)g(x)| = (f(x)p)λ(|g(x)|)1−λ ≤ λ|f(x)|p + (1− λ)|g(x)|q.

Now integrate with respect to µ on both sides.
The equality case, after we do the reduction, is the case where fp = gq.

Lemma 1.4 (Minkowki’s inequality). If 1 ≤ p < ∞, then ‖ · ‖p satisfies the triangle
inequality.

Proof. Assume f > 1, and let r, g ∈ L−. Then

|f + g|p ≤ (|f |+ |g|)|f + g|p−1 =

∫
|f ||f + g|p−1 dµ+

∫
|g||f + g|p−1 dµ

Apply Hölder’s inequality again,

≤ ‖fp‖‖|f + g|p−1‖q + ‖g‖p‖|f + g|p−1‖q.

We can now check, using q = p/(p− 1), that

‖|f + g|p‖q =

(∫
|f + g|p(q−1) dµ

)(p−1)/p
=

(∫
|f + g|p dµ

)(p−1)/p
= ‖f + g‖p−1p .

2Terence Tao says that in situations like this, we have just “spent a symmetry.” In this case, it is a
symmetry under scalar multiplication.
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Corollary 1.1. Let 1 ≤ p <∞.(Lp, ‖ · ‖p) is a normed space.

Proof. We have shown that Lp is a vector space, and ‖ · ‖p satisfies the triangle inequality.
The Lp norm is homogeneous of order 1, and if ‖fp‖ = 0, then

∫
|f |p = 0, which makes

f = 0 µ-a.e.

1.3 Convergence in Lp spaces

Theorem 1.1. Let 1 ≤ p <∞. Then Lp is a Banach space.

Proof. Assume
∑

n fn is absolutely convergent in Lp; i.e.
∑

n ‖fn‖p < ∞. Let Gn =∑n
i=1 |fi| ∈ Lp. It satisfies ‖Gn‖p ≤

∑n
i=1 ‖fi‖p and Gn(x) ↑ G(x), where G is measurable

and [0,∞]-valued. By the monotone convergence theorem, ‖Gn‖p ↑ ‖G‖p. Since ‖Gn‖p ≤∑
n ‖fn‖p, ‖G‖p ≤

∑
n ‖fn‖p. So G is finite a,e,, and G ∈ Lp. So

∑
n fn(x) is absolutely

convergent whenever G(x) <∞ (i.e. a.e.). Let’s call this pointwise limit f . |f |p ≤ |g|p a.e.
so |fp| ∈ L1; that is, |f | ∈ Lp. Finally,∣∣∣∣∣f −

n∑
i=1

fi

∣∣∣∣∣
p

≤ 2p|G|p ∈ L1.

By the dominated convergence theorem,∫
|f −

n∑
i=1

fi|p dµ
n→∞−−−→ 0,

so (∫
|f −

n∑
i=1

fi|p dµ

)1/p
n→∞−−−→ 0.

Proposition 1.1. For 1 ≤ p <∞, the set of integrable simple functions is dense in Lp.

Proof. Let f ∈ Lp. There exist complex-valeued simple functions (ψn)n such that ψn → f
a.e. and |ψ1| ≤ |ψ2| ≤ · · · ≤ |f |. Then |f − ψn|p ≤ 2|f |p ∈ L1, so ‖f − ψn‖ → 0 by the
dominated convergence theorem.

Corollary 1.2. Let m be Lebesgue measure on Rd. Then the collection of functions f ∈
C(Rd,C) with bounded support is dense in Lp(m).

1.4 L∞ spaces

Definition 1.3. Let (X,M, µ) be a measure space, and let f : X → C be measurable.
The L∞ norm or essential supremum is

‖f‖∞ = ess sup
x
|f(x)| = inf{a ≥ 0 : µ({|f | > a}) = 0}.
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Definition 1.4. L∞(µ) is the set of equivalence classes of functions f with ‖f‖∞ < ∞,
under the equivalence realtion of a.e. equality.

Theorem 1.2. L∞ has the following properties:

1. For all f, g, ‖fg‖q ≤ ‖f‖1‖g‖∞.

2. ‖ · ‖∞ is a norm.

3. L∞ is complete.

4. fn → f in L∞ iff there exists E ∈M with µ(Ec) = 0 such that fn|E → f |E uniformly.

5. The set of simple functions (not necessarily integrable) is dense in L∞.
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