Math 245B Lecture 20 Notes

Daniel Raban

March 1, 2019

1 Introduction to L^p Spaces

1.1 L^p spaces and norms

Fix a measure space $(X\mathcal{M}, \mu)$. We will deal with complex functions, but the real case is the same.

Definition 1.1. Let $0 , and let <math>f: X \to \mathbb{C}$ be measurable. The L^p norm¹ is

$$||f||_p := \left(\int_X |f|^p \, d\mu\right)^{1/p}.$$

If f doesn't have a lot of spiky parts in its graph, then the L^p norm of f is about the value of f. When the graph has huge peaks, as p gets bigger, the spikes are amplified. Likewise, as p gets bigger, tails of functions are suppressed.

Definition 1.2. The L^p space $L^p(X, \mathcal{M}, \mu) = L^p(\mu) = L^p$ is the space of measurable functions $f: X \to \mathbb{C}$ such that $||f||_p < \infty$.

Example 1.1. Let X be a countable set with the measure μ , counting measure on $(X, \mathcal{P}(X))$. Then $\ell^p(X) := L^p(\mu)$. As an example,

$$\ell^p(\mathbb{N}) = \ell^p = \left\{ (x_n)_n \in \mathbb{C}^{\mathbb{N}} : \sum_n |x_n|^p < \infty \right\}.$$

Lemma 1.1. For all $p \in (0, \infty)$, $L^p(\mu)$ is a vector space over \mathbb{C} .

Proof. If $||f||_p, ||g||_p < \infty$,

$$|f+g|^p \le (2\max(|f|,|g|))^p = 2^p \max(|f|^p,|g|^p) \le 2^p (|f|^p + |g|^p).$$

So

$$\int |f+g|^p d\mu \le 2^p \int |f|^p + 2^p \int |g|^p < \infty.$$

¹This is only really a norm when $p \ge 1$.

1.2 L^p norm inequalities

Now assume $p \geq 1$. We want to show that L^p is a normed space. These inequalities will help us, but they are very important to know on their own.

Lemma 1.2. If $a, b \ge 0$ and $0 < \lambda < 1$, then

$$a^{\lambda}b^{1-\lambda} \le \lambda a + (1-\lambda)b.$$

Proof. Assume a, b, > 0 and take logs:

$$\lambda \log(a) + (1_{\lambda}) \log(b) \le \log(\lambda a + (1 - \lambda)b)$$

by the convexity of log.

Lemma 1.3 (Hölder's inequality). Let $1 , and define <math>q \in (1, \infty)$ by $p^{-1} + q^{-1} = 1$. If $f, g: X \to \mathbb{C}$ are measurable, then

$$||fg|| \le ||f||_p ||g||_q$$
.

In particular, if $f \in L^p$ and $g \in L^q$, then $f, g \in L^1$. Equality holds if and only if $\alpha |f|^p = \beta |g|^q$ for some $\alpha, \beta \in \mathbb{C}$ not both zero.

Remark 1.1. In the statement of this lemma, q is called the **conjugate exponent** of p.

Proof. We may assume $9 < ||f||_p, ||g||_q < \infty$. The inequality holds for γf and λg for constants γ, λ iff it holds for f, g, so we may replace f, g by $f/||f||_p$ and $g/||g||_q$.² Let $\lambda = 1/p$, $1 - \lambda = 1/q$, and apply the previous inequality:

$$|f(x)g(x)| = (f(x)^p)^{\lambda} (|g(x)|)^{1-\lambda} \le \lambda |f(x)|^p + (1-\lambda)|g(x)|^q.$$

Now integrate with respect to μ on both sides.

The equality case, after we do the reduction, is the case where $f^p = g^q$.

Lemma 1.4 (Minkowki's inequality). If $1 \le p < \infty$, then $\|\cdot\|_p$ satisfies the triangle inequality.

Proof. Assume f > 1, and let $r, g \in L^-$. Then

$$|f+g|^p \le (|f|+|g|)|f+g|^{p-1} = \int |f||f+g|^{p-1} d\mu + \int |g||f+g|^{p-1} d\mu$$

Apply Hölder's inequality again,

$$\leq \|f_p\| \||f+g|^{p-1}\|_q + \|g\|_p \||f+g|^{p-1}\|_q.$$

We can now check, using q = p/(p-1), that

$$|||f+g|^p||_q = \left(\int |f+g|^{p(q-1)} d\mu\right)^{(p-1)/p} = \left(\int |f+g|^p d\mu\right)^{(p-1)/p} = ||f+g||_p^{p-1}. \quad \Box$$

²Terence Tao says that in situations like this, we have just "spent a symmetry." In this case, it is a symmetry under scalar multiplication.

Corollary 1.1. Let $1 \le p < \infty . (L^p, \|\cdot\|_p)$ is a normed space.

Proof. We have shown that L^p is a vector space, and $\|\cdot\|_p$ satisfies the triangle inequality. The L^p norm is homogeneous of order 1, and if $\|f_p\| = 0$, then $\int |f|^p = 0$, which makes f = 0 μ -a.e.

1.3 Convergence in L^p spaces

Theorem 1.1. Let $1 \le p < \infty$. Then L^p is a Banach space.

Proof. Assume $\sum_n f_n$ is absolutely convergent in L^p ; i.e. $\sum_n \|f_n\|_p < \infty$. Let $G_n = \sum_{i=1}^n |f_i| \in L^p$. It satisfies $\|G_n\|_p \leq \sum_{i=1}^n \|f_i\|_p$ and $G_n(x) \uparrow G(x)$, where G is measurable and $[0,\infty]$ -valued. By the monotone convergence theorem, $\|G_n\|_p \uparrow \|G\|_p$. Since $\|G_n\|_p \leq \sum_n \|f_n\|_p$, $\|G\|_p \leq \sum_n \|f_n\|_p$. So G is finite a,e,, and $G \in L^p$. So $\sum_n f_n(x)$ is absolutely convergent whenever $G(x) < \infty$ (i.e. a.e.). Let's call this pointwise limit $f \cdot |f|^p \leq |g|^p$ a.e. so $|f^p| \in L^1$; that is, $|f| \in L^p$. Finally,

$$\left| f - \sum_{i=1}^{n} f_i \right|^p \le 2^p |G|^p \in L^1.$$

By the dominated convergence theorem,

$$\int |f - \sum_{i=1}^{n} f_i|^p d\mu \xrightarrow{n \to \infty} 0,$$

so

$$\left(\int |f - \sum_{i=1}^{n} f_i|^p d\mu\right)^{1/p} \xrightarrow{n \to \infty} 0.$$

Proposition 1.1. For $1 \le p < \infty$, the set of integrable simple functions is dense in L^p .

Proof. Let $f \in L^p$. There exist complex-valeued simple functions $(\psi_n)_n$ such that $\psi_n \to f$ a.e. and $|\psi_1| \le |\psi_2| \le \cdots \le |f|$. Then $|f - \psi_n|^p \le 2|f|^p \in L^1$, so $||f - \psi_n|| \to 0$ by the dominated convergence theorem.

Corollary 1.2. Let m be Lebesgue measure on \mathbb{R}^d . Then the collection of functions $f \in C(\mathbb{R}^d, \mathbb{C})$ with bounded support is dense in $L^p(m)$.

1.4 L^{∞} spaces

Definition 1.3. Let (X, \mathcal{M}, μ) be a measure space, and let $f: X \to \mathbb{C}$ be measurable. The L^{∞} norm or essential supremum is

$$||f||_{\infty} = \operatorname{ess\,sup}_{x} |f(x)| = \inf\{a \ge 0 : \mu(\{|f| > a\}) = 0\}.$$

Definition 1.4. $L^{\infty}(\mu)$ is the set of equivalence classes of functions f with $||f||_{\infty} < \infty$, under the equivalence realtion of a.e. equality.

Theorem 1.2. L^{∞} has the following properties:

- 1. For all $f, g, ||fg||_q \le ||f||_1 ||g||_{\infty}$.
- 2. $\|\cdot\|_{\infty}$ is a norm.
- 3. L^{∞} is complete.
- 4. $f_n \to f$ in L^{∞} iff there exists $E \in \mathcal{M}$ with $\mu(E^c) = 0$ such that $f_n|_E \to f|_E$ uniformly.
- 5. The set of simple functions (not necessarily integrable) is dense in L^{∞} .